Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
MethodsX ; 12: 102645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38524303

ABSTRACT

Distributions of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and fecal viral biomarkers between solid and liquid phases of wastewater are largely unknown. Herein, distributions of SARS-CoV-2, Pepper Mild Mottle Virus (PMMoV), and F-RNA bacteriophage group II (FRNAPH-II) were determined by viral RNA RT-qPCR. Comparison of viral recovery using three conventional fractionation methods included membrane filtration, a combination of mid-speed centrifugation and membrane filtration, and high-speed centrifugation. SARS-CoV-2 partitioned to the solids fraction in greater abundance compared to liquid fractions in a combination of mid-speed centrifugation and membrane filtration and high-speed centrifugation, but not in membrane filtration method in a particular assay, while fecal biomarkers (PMMoV and FRNAPH-II) exhibited the reciprocal relationship. The wastewater fractionation method had minimal effects on the solids-liquids distribution for all viral and phage markers tested; however, viral RNA load was significantly greater in solid-liquid fractions viral RNA loads compared with the than whole-wastewater PEG precipitation. A RNeasy PowerWater Kit with PCR inhibitor removal resulted in greater viral RNA loads and lesser PCR inhibition compared to a QIAamp Viral RNA Mini Kit without PCR inhibitor removal. These results support the development of improved methods and interpretation of WBE of SARS-CoV-2. •Distribution of SARS-CoV-2 to liquid and solid portions was addressed.•Addressing PCR inhibition is important in wastewater-based epidemiology.•Fraction methods have minimal effect.

2.
Aquat Toxicol ; 265: 106761, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37980850

ABSTRACT

Early life-stage exposure of fishes to endocrine disrupting chemicals can induce reproductive impairment at sexual maturity. Previously, we demonstrated decreased fecundity of Japanese medaka (Oryzias latipes) exposed via maternal transfer to the novel brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO). However, that study failed to identify the causative mechanism. In other studies we have shown that decreased fecundity of adult fish exposed to dietary TBCO is likely due to impaired oocyte maturation. The goal of the present study was to determine if impaired oocyte maturation is responsible for decreased fecundity of Japanese medaka exposed as embryos to TBCO, via maternal transfer. Sexually mature fish (F0) were fed either a control diet or a low (74.7 µg/g) or high (663 µg/g) diet containing TBCO for 21 days. Eggs (F1) were collected during the final week of exposure and reared to sexual maturity at which point fecundity was assessed using a 21-day reproduction assay. Upon termination of the assay, an ex vivo oocyte maturation assay was used to determine whether maturation inducing hormone (MIH) stimulated oocyte maturation was impaired. Additionally, concentrations of 17ß -estradiol (E2) in blood plasma and expression of genes involved in vitellogenesis and oocyte maturation were quantified. The F1 generation females reared from the low or high F0 treatments experienced a 26.0 % and 56.8 % decrease in cumulative fecundity, respectively. Ex vivo MIH stimulated oocyte maturation from the low and high TBCO treatments were decreased by 23.4 % and 20.0 % respectively. There was no significant effect on concentrations of E2. Transcript abundance of vtgI was significantly decreased in a concentration dependent manner. Transcript abundance of mPRα, pgrmc1, pgrmc2, and igf3 were decreased but effects were not statistically significant. Overall, results suggest that impaired oocyte maturation causes decreased fecundity of Japanese medaka exposed to maternally deposited TBCO.


Subject(s)
Flame Retardants , Oryzias , Water Pollutants, Chemical , Animals , Female , Oryzias/metabolism , Flame Retardants/toxicity , Flame Retardants/metabolism , Water Pollutants, Chemical/toxicity , Fertility , Reproduction , Estradiol/metabolism , Oocytes
3.
Environ Sci Technol ; 57(41): 15644-15655, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37787753

ABSTRACT

Major aryl hydrocarbon receptor (AhR) agonists were identified in extracts of blubber, liver, and muscle from six long-beaked common dolphins (Delphinus capensis) and one fin whale (Balaenoptera physalus) collected from Korean coastal waters using effect-directed analysis. Results of the H4IIE-luc bioassay indicated that the polar fractions of blubber and liver extracts from the fin whale exhibited relatively high AhR-mediated potencies. Based on full-scan screening with high-resolution mass spectrometry, 37 AhR agonist candidates, spanning four use categories: pharmaceuticals, pesticides, cosmetics, and natural products, were selected. Among these, five polar AhR agonists were newly identified through toxicological confirmation. Concentrations of polar AhR agonists in cetaceans were tissue-specific, with extracts of blubber and liver containing greater concentrations than muscle extracts. Polar AhR agonists with great log KOA values (>5) were found to biomagnify in the marine food chain potentially. Polar AhR agonists contributed 8.9% of the observed AhR-mediated potencies in blubber and 49% in liver. Rutaecarpine and alantolactone contributed significantly to the total AhR-mediated potencies of blubber, whereas hydrocortisone was a major AhR contributor in the liver of the fin whale. This study is the first to identify the tissue-specific accumulation of polar AhR agonists in blubber and liver extracts of cetaceans.


Subject(s)
Fin Whale , Liver Extracts , Animals , Receptors, Aryl Hydrocarbon , Liver Extracts/analysis , Liver , Republic of Korea
4.
Aquat Toxicol ; 263: 106695, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37716316

ABSTRACT

Inhibition of oocyte maturation is an understudied mechanism by which chemical stressors can impair fecundity of female fishes. The primary objective of the present study was to develop an assay to assess oocyte maturation disruption by chemical stressors in Japanese medaka (Oryzias latipes). First, an in vitro assay to assess maturation inducing hormone (MIH)-stimulated oocyte maturation in zebrafish was validated for use with Japanese medaka. Next, using the brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), which previously was shown to decrease fecundity of Japanese medaka and inhibit oocyte maturation in zebrafish, effects on oocyte maturation were quantified using in vitro and in vivo exposure. Adaptation of the protocol for in vitro MIH-stimulated maturation of stage IV oocytes from zebrafish was successful in inducing greater than 80% of stage IX oocytes from female Japanese medaka to mature. To assess effects of in vitro exposure, stage IX oocytes were exposed to 0, 2, 20, and 200 µg/L of TBCO, followed by exposure to MIH. The in vitro exposure caused a significant decrease in maturation of oocytes exposed to 20 and 200 µg/L of TBCO. To assess effects of TBCO on fecundity and oocyte maturation following in vivo exposure, sexually mature fish were fed a control, 100 µg/g, or 1000 µg/g concentration of TBCO-spiked fish food for 21 days, where fecundity was measured daily, and following the exposure, stage IX oocytes were excised to assess MIH-stimulated maturation. Fecundity and oocyte maturation were significantly decreased at either concentration of TBCO. Plasma concentrations of 17ß-estradiol (E2) and hepatic abundances of transcripts of vitellogenin (vtgI and vtgII) were quantified, but there were no significant differences between treatments. Results suggest that inhibition of oocyte maturation is a mechanism by which TBCO decreases fecundity, and that in vitro assays of oocyte maturation might be predictive of fecundity in this species.

5.
Sci Total Environ ; 901: 166541, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37625717

ABSTRACT

Wastewater surveillance (WS) helps to improve the understanding of the spread of communicable diseases in communities. WS can assist public health decision-makers in the design and implementation of timely mitigation measures. There is an increased need to use reliable, cost-effective, simple, and rapid WS systems, given traditional analytical (or 'gold-standard') programs are instrument/time-intensive, and dependent on highly skilled personnel. This study investigated the application of the portable GeneXpert platform for WS of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), influenza B virus (IBV), and respiratory syncytial virus (RSV). The GeneXpert system with the Xpert Xpress-SARS-CoV-2/Flu/RSV test kit uses reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to analyze wastewater samples. From September 2022 through January 2023, wastewater samples were collected from the influents of municipal wastewater treatment plants (MWTPs) of Saskatoon, Prince Albert, and North Battleford in the province of Saskatchewan, Canada. Both raw and concentrated wastewater samples were subjected to the GeneXpert analysis. Results showed that the Saskatoon wastewater viral loads were significantly correlated to Saskatchewan's influenza and COVID-19 clinical cases, with a lead time of 10 days for IAV and a lag time of 4 days for SARS-CoV-2. Additionally, the GeneXpert analysis of the three cities' wastewater samples showed that the raw WS could capture the dynamics of SARS-CoV-2 and IAV due to their correlation with concentrated WS. Interestingly, IBV loads were not detected in any wastewater samples, while the Saskatoon and Prince Albert wastewater samples collected following the 2023 holiday season (end of December and beginning of January) were positive for RSV. This study indicates that the GeneXpert has excellent potential for use in the development of an early warning system for transmissible disease in municipalities and limited-resource communities while simultaneously providing stakeholders with an efficient WS methodology.

6.
Chemosphere ; 333: 138682, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37201600

ABSTRACT

Wastewater monitoring and epidemiology have seen renewed interest during the recent COVID-19 pandemic. As a result, there is an increasing need to normalize wastewater-derived viral loads in local populations. Chemical tracers, both exogenous and endogenous compounds, have proven to be more stable and reliable for normalization than biological indicators. However, differing instrumentation and extraction methods can make it difficult to compare results. This review examines current extraction and quantification methods for ten common population indicators: creatinine, coprostanol, nicotine, cotinine, sucralose, acesulfame, androstenedione 5-hydroindoleacetic acid (5-HIAA), caffeine, and 1,7-dimethyluric acid. Some wastewater parameters such as ammonia, total nitrogen, total phosphorus, and daily flowrate were also evaluated. The analytical methods included direct injection, dilute and shoot, liquid/liquid, and solid phase extraction (SPE). Creatine, acesulfame, nicotine, 5-HIAA and androstenedione have been analysed by direct injection into LC-MS; however, most authors prefer to include SPE steps to avoid matrix effects. Both LC-MS and GC-MS have been successfully used to quantify coprostanol in wastewater, and the other selected indicators have been quantified successfully with LC-MS. Acidification to stabilize the sample before freezing to maintain the integrity of samples has been reported to be beneficial. However, there are arguments both for and against working at acidic pHs. Wastewater parameters mentioned earlier are quick and easy to quantify, but the data does not always represent the human population effectively. A preference for population indicators originating solely from humans is apparent. This review summarises methods employed for chemical indicators in wastewater, provides a basis for choosing an appropriate extraction and analysis method, and highlights the utility of accurate chemical tracer data for wastewater-based epidemiology.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Wastewater , Nicotine/analysis , RNA, Viral , SARS-CoV-2 , Hydroxyindoleacetic Acid/analysis , Androstenedione/analysis , Cholestanol/analysis , Pandemics , Water Pollutants, Chemical/analysis , COVID-19/epidemiology , Solid Phase Extraction/methods , Indicators and Reagents
7.
Sci Total Environ ; 876: 162800, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36914129

ABSTRACT

Wastewater surveillance (WWS) is useful to better understand the spreading of coronavirus disease 2019 (COVID-19) in communities, which can help design and implement suitable mitigation measures. The main objective of this study was to develop the Wastewater Viral Load Risk Index (WWVLRI) for three Saskatchewan cities to offer a simple metric to interpret WWS. The index was developed by considering relationships between reproduction number, clinical data, daily per capita concentrations of virus particles in wastewater, and weekly viral load change rate. Trends of daily per capita concentrations of SARS-CoV-2 in wastewater for Saskatoon, Prince Albert, and North Battleford were similar during the pandemic, suggesting that per capita viral load can be useful to quantitatively compare wastewater signals among cities and develop an effective and comprehensible WWVLRI. The effective reproduction number (Rt) and the daily per capita efficiency adjusted viral load thresholds of 85 × 106 and 200 × 106 N2 gene counts (gc)/population day (pd) were determined. These values with rates of change were used to categorize the potential for COVID-19 outbreaks and subsequent declines. The weekly average was considered 'low risk' when the per capita viral load was 85 × 106 N2 gc/pd. A 'medium risk' occurs when the per capita copies were between 85 × 106 and 200 × 106 N2 gc/pd. with a rate of change <100 %. The start of an outbreak is indicated by a 'medium-high' risk classification when the week-over-week rate of change was >100 %, and the absolute magnitude of concentrations of viral particles was >85 × 106 N2 gc/pd. Lastly, a 'high risk' occurs when the viral load exceeds 200 × 106 N2 gc/pd. This methodology provides a valuable resource for decision-makers and health authorities, specifically given the limitation of COVID-19 surveillance based on clinical data.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cities/epidemiology , Grassland , Wastewater , Wastewater-Based Epidemiological Monitoring , Saskatchewan/epidemiology
8.
Chemosphere ; 313: 137561, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36565769

ABSTRACT

Exposure of fishes to endocrine disrupting chemicals (EDCs) during early development can induce multigenerational and transgenerational effects on reproduction. Both in vivo and in vitro studies have demonstrated that the brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), is an EDC. The present study investigated whether TBCO has mutigenerational and/or transgenerational effects on the reproductive performance of Japanese medaka (Oryzias latipes). Sexually mature fish (F0 generation) were fed either a control diet or a low (40.6 µg/g) or high (1034.4 µg/g) diet containing TBCO, and three generations of embryos were reared to determine reproductive performance using a standard 21-day reproduction assay. Concentrations of TBCO in eggs (F1 generation) from F0 fish given the low and high diets were 711.3 and 2535.5 ng/g wet weight, respectively. Cumulative fecundity of the F1 generation in the low and high treatment were reduced by 33.9% and 33.3%, respectively, compared to the control. In the F2 generation, cumulative fecundity of the low treatment returned to the level of the controls, but the high treatment was decreased by 29.8%. There was no decrease in cumulative fecundity in the F3 generation compared to the controls. Mechanistically, mRNA abundances of cholesterol side chain cleavage enzyme (cyp11a), aromatase (cyp19a), and luteinizing hormone receptor (lhr) were differentially expressed in gonads from F1 females, suggesting that TBCO might cause developmental reprogramming that disrupts steroidogenesis leading to decreased fecundity. However, concentrations of E2 in plasma and mRNA abundance of vitellogenin in liver were not significantly different compared to controls suggesting a mechanism other than disruption of steroidogenesis or vitellogenesis. Mechanistically, no effects were observed in the F2 or F3 generation. Overall, results suggest that TBCO has multigenerational effects on the reproductive performance of Japanese medaka. However, no transgenerational effects were observed as the F3 generation fully recovered. The mechanism by which multigenerational effects were induced is not known.


Subject(s)
Flame Retardants , Oryzias , Water Pollutants, Chemical , Animals , Female , Oryzias/genetics , Flame Retardants/toxicity , Reproduction , Fertility , Water Pollutants, Chemical/toxicity
9.
Sci Total Environ ; 841: 156741, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35716745

ABSTRACT

Monitoring the communal incidence of COVID-19 is important for both government and residents of an area to make informed decisions. However, continuous reliance on one means of monitoring might not be accurate because of biases introduced by government policies or behaviours of residents. Wastewater surveillance was employed to monitor concentrations of SARS-CoV-2 RNA in raw influent wastewater from wastewater treatment plants serving three Canadian Prairie cities with different population sizes. Data obtained from wastewater are not directly influenced by government regulations or behaviours of individuals. The means of three weekly samples collected using 24 h composite auto-samplers were determined. Viral loads were determined by RT-qPCR, and whole-genome sequencing was used to charaterize variants of concern (VOC). The dominant VOCs in the three cities were the same but with different proportions of sub-lineages. Sub-lineages of Delta were AY.12, AY.25, AY.27 and AY.93 in 2021, while the major sub-lineage of Omicron was BA.1 in January 2022, and BA.2 subsequently became a trace-level sub-variant then the predominant VOC. When each VOC was first detected varied among cities; However, Saskatoon, with the largest population, was always the first to present new VOCs. Viral loads varied among cities, but there was no direct correlation with population size, possibly because of differences in flow regimes. Population is one of the factors that affects trends in onset and development of local outbreaks during the pandemic. This might be due to demography or the fact that larger populations had greater potential for inter- and intra-country migration. Hence, wastewater surveillance data from larger cities can typically be used to indicate what to expect in smaller communities.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Canada , Cities , Humans , RNA, Viral , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
10.
Environ Sci Technol ; 56(3): 1820-1829, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35015514

ABSTRACT

The epithelial cell layer that lines the gills of fish controls paracellular permeation of chemicals through tight junctions. The integrity of tight junctions can be affected by inflammation, which likely affects the bioavailability of chemicals. Here, the inflammation of the rainbow trout gill cell line RTgill-W1 was induced via exposure to bacterial lipopolysaccharides (LPS). Cells were then coexposed to extracts of oil sands process-affected water (OSPW), which contain complex mixtures of chemicals. After 24 h of exposure, cells exposed to LPS showed a reduction in transepithelial electrical resistance, an indicator of tight junction integrity. Quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis determined that abundances of transcripts of genes coding for tight junction proteins were significantly less in cells exposed to 20, 50, or 100 mg L-1 LPS. Chemical analysis revealed increased permeation of constituents of OSPW across epithelia at all studied LPS concentrations. These in vitro findings were confirmed in vivo in rainbow trout exposed to LPS and OSPW for 48 h, which resulted in greater accumulation of chemicals relative to that for fish exposed to OSPW alone. Our results demonstrated that inflammation and disruption of tight junctions could lead to greater uptake of potentially harmful chemicals from the environment, which has implications for mixture risk assessment.


Subject(s)
Gills , Oncorhynchus mykiss , Animals , Gills/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Oil and Gas Fields , Oncorhynchus mykiss/metabolism , Organic Chemicals/metabolism , Tight Junctions/metabolism
11.
Eco Environ Health ; 1(3): 147-155, 2022 Sep.
Article in English | MEDLINE | ID: mdl-38075595

ABSTRACT

Brominated disinfection by-products (Br-DBPs) can form during the chlorination of drinking water in treatment plants (DWTP). Regulations exist for a small subset of Br-DBPs; however, hundreds of unregulated Br-DBPs have been detected, and limited information exists on their occurrence, concentrations, and seasonal trends. Here, a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) method were optimized to screen chlorinated waters for Br-DBPs. There were 553 Br-DBPs detected with m/z values ranging from 170.884 to 497.0278 and chromatographic retention times from 2.4 to 26.2 min. With MS2 information, structures for 40 of the 54 most abundant Br-DBPs were predicted. The method was then applied to a year-long study in which raw, clear well, and finished water were analyzed monthly. The 54 most abundant unregulated Br-DBPs were subjected to trend analysis. Br-DBPs with higher oxygen-to-carbon (O/C) and bromine-to-carbon (Br/C) ratios increased as water moved from the clear well to the finished stage, which indicated the dynamic formation of Br-DBPs. Monthly trends of unregulated Br-DBPs were compared to raw water parameters, such as natural organic matter, temperature, and total bromine, but no correlations were observed. It was found that total concentrations of bromine (TBr) in finished water (0.04-0.12 mg/L) were consistently and significantly greater than in raw water (0.013-0.038 mg/L, P < 0.001), suggesting the introduction of bromine during the disinfection process. Concentrations of TBr in treatment units, rather than raw water, were significantly correlated to 34 of the Br-DBPs at α = 0.05. This study provides the first evidence that monthly trends of unregulated Br-DBPs can be associated with the concentration of TBr in treated waters.

12.
ACS ES T Water ; 2(11): 1852-1862, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-37552734

ABSTRACT

There are no standardized protocols for quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater to date, especially for population normalization. Here, a pipeline was developed, applied, and assessed to quantify SARS-CoV-2 and key variants of concern (VOCs) RNA in wastewater at Saskatoon, Canada. Normalization approaches using recovery ratio and extraction efficiency, wastewater parameters, or population indicators were assessed by comparing to daily numbers of new cases. Viral load was positively correlated with daily new cases reported in the sewershed. Wastewater surveillance (WS) had a lead time of approximately 7 days, which indicated surges in the number of new cases. WS revealed the variant α and δ driving the third and fourth wave, respectively. The adjustment with the recovery ratio and extraction efficiency improved the correlation between viral load and daily new cases. Normalization of viral concentration to concentrations of the artificial sweetener acesulfame K improved the trend of viral load during the Christmas and New Year holidays when populations were dynamic and variable. Acesulfame K performed better than pepper mild mottle virus, creatinine, and ammonia for population normalization. Hence, quality controls to characterize recovery ratios and extraction efficiencies and population normalization with acesulfame are promising for precise WS programs supporting decision-making in public health.

13.
Sci Total Environ ; 807(Pt 3): 151060, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34710422

ABSTRACT

Activities of gut microbiomes are often overlooked in assessments of ecotoxicological effects of environmental contaminants. Effects of the polycyclic aromatic hydrocarbon, benzo[a]pyrene (BaP) on active gut microbiomes of juvenile fathead minnows (Pimephales promelas) were investigated. Fish were exposed for two weeks, to concentrations of 0, 1, 10, 100, or 1000 µg BaP g-1 in the diet. The active gut microbiome was characterized using 16S rRNA metabarcoding to determine its response to dietary exposure of BaP. BaP reduced alpha-diversity at the greatest exposure concentrations. Additionally, exposure to BaP altered community composition of active microbiome and resulted in differential proportion of taxa associated with hydrocarbon degradation and fish health. Neighborhood selection networks of active microbiomes were not reduced with greater concentrations of BaP, which suggests ecological resistance and/or resilience of gut microbiota. The active gut microbiome had a similar overall biodiversity as that of the genomic gut microbiota, but had a distinct composition from that of the 16S rDNA profile. Responses of alpha- and beta-diversities of the active microbiome to BaP exposure were consistent with that of genomic microbiomes. Normalized activity of microbiome via the ratio of rRNA to rDNA abundance revealed rare taxa that became active or dormant due to exposure to BaP. These differences highlight the need to assess both 16S rDNA and rRNA metabarcoding to fully derive bacterial compositional changes resulting from exposure to contaminants.


Subject(s)
Cyprinidae , Gastrointestinal Microbiome , Animals , Benzo(a)pyrene/toxicity , Genomics , RNA, Ribosomal, 16S/genetics
14.
Sci Total Environ ; 814: 152547, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34952081

ABSTRACT

Due to their relatively large production and few restrictions on uses, novel substitutes for historically used per and poly-fluoroalkyl substances (PFAS) are being used and accumulating in the environment. However, due to a lack of information on their toxicological properties their hazards and risks are hard to estimate. Before fertilization, oocytes of two salmonid species, Arctic Char (Salvelinus alpinus) and Rainbow Trout (Oncorhynchus mykiss), were exposed to three PFAS substances used as substitutes for traditional PFAS, PFBA, PFBS or GenX or two archetypical, historically used, longer-chain PFAS, PFOA and PFOS. Exposed oocytes were subsequently fertilized, incubated and were sampled during several developmental stages, until swim-up. All five PFAS were accumulated into egg yolks with similar absorption rates, and their concentrations in egg yolks were less than respective concentrations in/on egg chorions. Rapid elimination of the five PFAS was observed during the first 3 days after fertilization. Thereafter, amounts of PFOS and PFOA were stable until swim-up, while PFBA, PFBS and GenX were further eliminated during development from one month after the fertilization to swim-up. In these two salmonid species, PFBA, PFBS and GenX were eliminated faster than were PFOS or PFOA.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Oncorhynchus mykiss , Animals , Fertilization
15.
Environ Toxicol Chem ; 41(1): 175-183, 2022 01.
Article in English | MEDLINE | ID: mdl-34888928

ABSTRACT

Reptiles represent the least-studied group of vertebrates with regards to ecotoxicology and no empirical toxicity data existed for dioxin-like chemicals (DLCs). This lack of toxicity data represents a significant uncertainty in ecological risk assessments of this taxon. Therefore, the present study assessed early-life sensitivity to select DLCs and developed relative potencies in the common snapping turtle (Chelydra serpentina) as a model reptile. Specifically, survival to hatch and incidence of pathologies were assessed in common snapping turtle exposed in ovo to serial concentrations of the prototypical reference congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and three other DLCs of environmental relevance, namely, 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB 126). In ovo exposure to TCDD, PeCDF, TCDF, and PCB 126 caused a dose-dependent increase in early-life mortality, with median lethal doses (LD50s) of 14.9, 11.8, 29.6, and 185.9 pg/g-egg, respectively. Except for abnormal vasculature development, few pathologies were observed. Based on the measured LD50, common snapping turtle is more sensitive to TCDD in ovo than other species of oviparous vertebrates investigated to date. The potencies of PeCDF, TCDF, and PCB 126 relative to TCDD were 1.3, 0.5, and 0.08, respectively. These relative potencies are within an order of magnitude of World Health Organization (WHO) TCDD-equivalency factors (TEFs) for both mammals and birds supporting these TEFs as relevant for assessing ecological risk to reptiles. The great sensitivity to toxicities of the common snapping turtle, and potentially other species of reptiles, suggests a clear need for further investigation into the ecotoxicology of this taxon. Environ Toxicol Chem 2022;41:175-183. © 2021 SETAC.


Subject(s)
Dioxins , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Turtles , Animals , Mammals , Polychlorinated Biphenyls/toxicity , Polychlorinated Dibenzodioxins/toxicity , Rats , Rats, Sprague-Dawley , Reptiles
16.
Rev Environ Contam Toxicol ; 258: 27-53, 2021.
Article in English | MEDLINE | ID: mdl-34529146

ABSTRACT

Safeners are a group of chemicals applied with herbicides to protect crop plants from potential adverse effects of agricultural products used to kill weeds in monocotyledonous crops. Various routes of dissipation of safeners from their point of applications were evaluated. Despite the large numbers of safeners (over 18) commercially available and the relatively large quantities (~2 × 106 kg/year) used, there is little information on their mobility and fate in the environment and occurrence in various environmental matrices. The only class of safeners for which a significant amount of information is available is dichloroacetamide safeners, which have been observed in some rivers in the USA at concentrations ranging from 42 to 190 ng/L. Given this gap in the literature, there is a clear need to determine the occurrence, fate, and bioavailability of other classes of safeners. Furthermore, since safeners are typically used in commercial formulations, it is useful to study them in relation to their corresponding herbicides. Common routes of dissipation for herbicides and applied safeners are surface run off (erosion), hydrolysis, photolysis, sorption, leaching, volatilization, and microbial degradation. Toxic potencies of safeners vary among organisms and safener compounds, ranging from as low as the LC50 for fish (Oncorhynchus mykiss) for isoxadifen-ethyl, which was 0.34 mg/L, to as high as the LC50 for Daphnia magna from dichlormid, which was 161 mg/L. Solubilities and octanol-water partition coefficients seem to be the principal driving force in understanding safener mobilities. This paper provides an up-to-date literature review regarding the occurrence, behaviour, and toxic potency of herbicide safeners and identifies important knowledge gaps in our understanding of these compounds and the potential risks posed to potentially impacted ecosystems.


Subject(s)
Crop Protection , Herbicides , Animals , Ecosystem , Herbicides/toxicity , Photolysis , Plants
17.
Aquat Toxicol ; 238: 105929, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34375885

ABSTRACT

The brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO), has been shown to decrease fecundity in Japanese medaka (Oryzias latipes) and there is indirect evidence from analysis of the transcriptome and proteome that this effect might be due to impaired oogenesis. An assay for disruption of oocyte maturation by chemical stressors has not been developed in Japanese medaka. Thus, using zebrafish (Danio rerio) as a model, objectives of the present study were to determine whether exposure to TBCO has effects on maturation of oocytes and to investigate potential mechanisms. Sexually mature female zebrafish were given a diet of 35.3 or 628.8 µg TBCO / g food for 14 days after which, stage IV oocytes were isolated to assess maturation in response to maturation inducing hormone. To explore potential molecular mechanisms, abundances of mRNAs of a suite of genes that regulate oocyte maturation were quantified by use of quantitative real-time PCR, and abundances of microRNAs were determined by use of miRNAseq. Ex vivo maturation of oocytes from fish exposed to TBCO was significantly less than maturation of oocytes from control fish. The percentage of oocytes which matured from control fish and those exposed to low and high TBCO were 89, 71, and 67%, respectively. Among the suite of genes known to regulate oocyte maturation, mRNA abundance of insulin like growth factor-3 was decreased by 1.64- and 3.44-fold in stage IV oocytes from females given the low and high concentrations of TBCO, respectively, compared to the control group. Abundances of microRNAs regulating the expression of proteins that regulate oocyte maturation, including processes related to insulin-like growth factor, were significantly different in stage IV oocytes from fish exposed to TBCO. Overall, results of this study indicated that impaired oocyte maturation might be a mechanism of reduced reproductive performance in TBCO-exposed fish. Results also suggested that effects of TBCO on oocyte maturation might be due to molecular perturbations on insulin-like growth factor signaling and expression of microRNAs.

18.
Environ Sci Technol ; 55(17): 11590-11600, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34383468

ABSTRACT

The white sturgeon (Acipenser transmontanus) is an endangered ancient fish species that is known to be particularly sensitive to certain environmental contaminants, partly because of the uptake and subsequent toxicity of lipophilic pollutants prone to bioconcentration as a result of their high lipid content. To better understand the bioconcentration of organic contaminants in this species, toxicokinetic (TK) models were developed for the embryo-larval and subadult life stages. The embryo-larval model was designed as a one-compartment model and validated using whole-body measurements of benzo[a]pyrene (B[a]P) metabolites from a waterborne exposure to B[a]P. A physiologically based TK (PBTK) model was used for the subadult model. The predictive power of the subadult model was validated with an experimental data set of four chemicals. Results showed that the TK models could accurately predict the bioconcentration of organic contaminants for both life stages of white sturgeon within 1 order of magnitude of measured values. These models provide a tool to better understand the impact of environmental contaminants on the health and the survival of endangered white sturgeon populations.


Subject(s)
Water Pollutants, Chemical , Animals , Bioaccumulation , Fishes , Larva , Toxicokinetics
19.
Glob Chang Biol ; 27(14): 3282-3298, 2021 07.
Article in English | MEDLINE | ID: mdl-33837644

ABSTRACT

Arctic warming associated with global climate change poses a significant threat to populations of wildlife in the Arctic. Since lipids play a vital role in adaptation of organisms to variations in temperature, high-resolution mass-spectrometry-based lipidomics can provide insights into adaptive responses of organisms to a warmer environment in the Arctic and help to illustrate potential novel roles of lipids in the process of thermal adaption. In this study, we studied an ecologically and economically important species-Arctic char (Salvelinus alpinus)-with a detailed multi-tissue analysis of the lipidome in response to chronic shifts in temperature using a validated lipidomics workflow. In addition, dynamic alterations in the hepatic lipidome during the time course of shifts in temperature were also characterized. Our results showed that early life stages of Arctic char were more susceptible to variations in temperature. One-year-old Arctic char responded to chronic increases in temperature with coordinated regulation of lipids, including headgroup-specific remodeling of acyl chains in glycerophospholipids (GP) and extensive alterations in composition of lipids in membranes, such as less lyso-GPs, and more ether-GPs and sphingomyelin. Glycerolipids (e.g., triacylglycerol, TG) also participated in adaptive responses of the lipidome of Arctic char. Eight-week-old Arctic char exhibited rapid adaptive alterations of the hepatic lipidome to stepwise decreases in temperature while showing blunted responses to gradual increases in temperature, implying an inability to adapt rapidly to warmer environments. Three common phosphatidylethanolamines (PEs) (PE 36:6|PE 16:1_20:5, PE 38:7|PE 16:1_22:6, and PE 40:7|PE 18:1_22:6) were finally identified as candidate lipid biomarkers for temperature shifts via machine learning approach. Overall, this work provides additional information to a better understanding of underlying regulatory mechanisms of the lipidome of Arctic organisms in the face of near-future warming.


Subject(s)
Lipidomics , Trout , Animals , Arctic Regions , Climate Change , Temperature
20.
Environ Pollut ; 278: 116821, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33706240

ABSTRACT

The microbiome has been described as an additional host "organ" with well-established beneficial roles. However, the effects of exposures to chemicals on both structure and function of the gut microbiome of fishes are understudied. To determine effects of benzo[a]pyrene (BaP), a model persistent organic pollutant, on structural shifts of gut microbiome in juvenile fathead minnows (Pimephales promelas), fish were exposed ad libitum in the diet to concentrations of 1, 10, 100, or 1000 µg BaP g-1 food, in addition to a vehicle control, for two weeks. To determine the link between exposure to BaP and changes in the microbial community, concentrations of metabolites of BaP were measured in fish bile and 16S rRNA amplicon sequencing was used to evaluate the microbiome. Exposure to BaP only reduced alpha-diversity at the greatest exposure concentrations. However, it did alter community composition assessed as differential abundance of taxa and reduced network complexity of the microbial community in all exposure groups. Results presented here illustrate that environmentally-relevant concentrations of BaP can alter the diversity of the gut microbiome and community network connectivity.


Subject(s)
Cyprinidae , Gastrointestinal Microbiome , Water Pollutants, Chemical , Animals , Benzo(a)pyrene/toxicity , Dietary Exposure , RNA, Ribosomal, 16S , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...